Bayesian Supervised Hashing

CVPR 2017  ·  Zihao Hu, Junxuan Chen, Hongtao Lu, Tongzhen Zhang ·

Among learning based hashing methods, supervised hashing seeks compact binary representation of the training data to preserve semantic similarities. Recent years have witnessed various problem formulations and optimization methods for supervised hashing. Most of them optimize a form of loss function with a regulization term, which can be viewed as a maximum a posterior (MAP) estimation of the hashing codes. However, these approaches are prone to overfitting unless hyperparameters are tuned carefully. To address this problem, we present a novel fully Bayesian treatment for supervised hashing problem, named Bayesian Supervised Hashing (BSH), in which hyperparameters are automatically tuned during optimization. Additionally, by utilizing automatic relevance determination (ARD), we can figure out relative discriminating ability of different hashing bits and select most informative bits among them. Experimental results on three real-world image datasets with semantic information show that BSH can achieve superior performance over state-of-the-art methods with comparable training time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here