BayesRace: Learning to race autonomously using prior experience

10 May 2020  ·  Achin Jain, Matthew O'Kelly, Pratik Chaudhari, Manfred Morari ·

Autonomous race cars require perception, estimation, planning, and control modules which work together asynchronously while driving at the limit of a vehicle's handling capability. A fundamental challenge encountered in designing these software components lies in predicting the vehicle's future state (e.g. position, orientation, and speed) with high accuracy. The root cause is the difficulty in identifying vehicle model parameters that capture the effects of lateral tire slip. We present a model-based planning and control framework for autonomous racing that significantly reduces the effort required in system identification and control design. Our approach alleviates the gap induced by simulation-based controller design by learning from on-board sensor measurements. A major focus of this work is empirical, thus, we demonstrate our contributions by experiments on validated 1:43 and 1:10 scale autonomous racing simulations.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here