BCNet: Searching for Network Width with Bilaterally Coupled Network

Searching for a more compact network width recently serves as an effective way of channel pruning for the deployment of convolutional neural networks (CNNs) under hardware constraints. To fulfill the searching, a one-shot supernet is usually leveraged to efficiently evaluate the performance \wrt~different network widths. However, current methods mainly follow a \textit{unilaterally augmented} (UA) principle for the evaluation of each width, which induces the training unfairness of channels in supernet. In this paper, we introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue. In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately. Besides, we leverage a stochastic complementary strategy for training the BCNet, and propose a prior initial population sampling method to boost the performance of the evolutionary search. Extensive experiments on benchmark CIFAR-10 and ImageNet datasets indicate that our method can achieve state-of-the-art or competing performance over other baseline methods. Moreover, our method turns out to further boost the performance of NAS models by refining their network widths. For example, with the same FLOPs budget, our obtained EfficientNet-B0 achieves 77.36\% Top-1 accuracy on ImageNet dataset, surpassing the performance of original setting by 0.48\%.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here