Benchmarking Denoising Algorithms with Real Photographs

CVPR 2017  ·  Tobias Plötz, Stefan Roth ·

Lacking realistic ground truth data, image denoising techniques are traditionally evaluated on images corrupted by synthesized i.i.d. Gaussian noise... We aim to obviate this unrealistic setting by developing a methodology for benchmarking denoising techniques on real photographs. We capture pairs of images with different ISO values and appropriately adjusted exposure times, where the nearly noise-free low-ISO image serves as reference. To derive the ground truth, careful post-processing is needed. We correct spatial misalignment, cope with inaccuracies in the exposure parameters through a linear intensity transform based on a novel heteroscedastic Tobit regression model, and remove residual low-frequency bias that stems, e.g., from minor illumination changes. We then capture a novel benchmark dataset, the Darmstadt Noise Dataset (DND), with consumer cameras of differing sensor sizes. One interesting finding is that various recent techniques that perform well on synthetic noise are clearly outperformed by BM3D on photographs with real noise. Our benchmark delineates realistic evaluation scenarios that deviate strongly from those commonly used in the scientific literature. read more

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here