Benchmarking Energy-Conserving Neural Networks for Learning Dynamics from Data

3 Dec 2020  ·  Yaofeng Desmond Zhong, Biswadip Dey, Amit Chakraborty ·

The last few years have witnessed an increased interest in incorporating physics-informed inductive bias in deep learning frameworks. In particular, a growing volume of literature has been exploring ways to enforce energy conservation while using neural networks for learning dynamics from observed time-series data. In this work, we survey ten recently proposed energy-conserving neural network models, including HNN, LNN, DeLaN, SymODEN, CHNN, CLNN and their variants. We provide a compact derivation of the theory behind these models and explain their similarities and differences. Their performance are compared in 4 physical systems. We point out the possibility of leveraging some of these energy-conserving models to design energy-based controllers.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here