Benchmarking quantum co-processors in an application-centric, hardware-agnostic and scalable way

25 Feb 2021  ·  Simon Martiel, Thomas Ayral, Cyril Allouche ·

Existing protocols for benchmarking current quantum co-processors fail to meet the usual standards for assessing the performance of High-Performance-Computing platforms. After a synthetic review of these protocols -- whether at the gate, circuit or application level -- we introduce a new benchmark, dubbed Atos Q-score (TM), that is application-centric, hardware-agnostic and scalable to quantum advantage processor sizes and beyond. The Q-score measures the maximum number of qubits that can be used effectively to solve the MaxCut combinatorial optimization problem with the Quantum Approximate Optimization Algorithm. We give a robust definition of the notion of effective performance by introducing an improved approximation ratio based on the scaling of random and optimal algorithms. We illustrate the behavior of Q-score using perfect and noisy simulations of quantum processors. Finally, we provide an open-source implementation of Q-score that makes it easy to compute the Q-score of any quantum hardware.

PDF Abstract