BNEM: A Boltzmann Sampler Based on Bootstrapped Noised Energy Matching

15 Sep 2024  ·  Ruikang Ouyang, Bo Qiang, Zixing Song, José Miguel Hernández-Lobato ·

Developing an efficient sampler capable of generating independent and identically distributed (IID) samples from a Boltzmann distribution is a crucial challenge in scientific research, e.g. molecular dynamics. In this work, we intend to learn neural samplers given energy functions instead of data sampled from the Boltzmann distribution. By learning the energies of the noised data, we propose a diffusion-based sampler, Noised Energy Matching, which theoretically has lower variance and more complexity compared to related works. Furthermore, a novel bootstrapping technique is applied to NEM to balance between bias and variance. We evaluate NEM and BNEM on a 2-dimensional 40 Gaussian Mixture Model (GMM) and a 4-particle double-well potential (DW-4). The experimental results demonstrate that BNEM can achieve state-of-the-art performance while being more robust.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here