BERTese: Learning to Speak to BERT

EACL 2021  ·  Adi Haviv, Jonathan Berant, Amir Globerson ·

Large pre-trained language models have been shown to encode large amounts of world and commonsense knowledge in their parameters, leading to substantial interest in methods for extracting that knowledge. In past work, knowledge was extracted by taking manually-authored queries and gathering paraphrases for them using a separate pipeline... In this work, we propose a method for automatically rewriting queries into "BERTese", a paraphrase query that is directly optimized towards better knowledge extraction. To encourage meaningful rewrites, we add auxiliary loss functions that encourage the query to correspond to actual language tokens. We empirically show our approach outperforms competing baselines, obviating the need for complex pipelines. Moreover, BERTese provides some insight into the type of language that helps language models perform knowledge extraction. read more

PDF Abstract EACL 2021 PDF EACL 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here