Best feature performance in codeswitched hate speech texts

ICLR 2020 Anonymous

How well can hate speech concept be abstracted in order to inform automatic classification in codeswitched texts by machine learning classifiers? We explore different representations and empirically evaluate their predictiveness using both conventional and deep learning algorithms in identifying hate speech in a ~48k human-annotated dataset that contain mixed languages, a phenomenon common among multilingual speakers... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet