Best-of-Both-Worlds Algorithms for Partial Monitoring

29 Jul 2022  ·  Taira Tsuchiya, Shinji Ito, Junya Honda ·

This study considers the partial monitoring problem with $k$-actions and $d$-outcomes and provides the first best-of-both-worlds algorithms, whose regrets are favorably bounded both in the stochastic and adversarial regimes. In particular, we show that for non-degenerate locally observable games, the regret is $O(m^2 k^4 \log(T) \log(k_{\Pi} T) / \Delta_{\min})$ in the stochastic regime and $O(m k^{2/3} \sqrt{T \log(T) \log k_{\Pi}})$ in the adversarial regime, where $T$ is the number of rounds, $m$ is the maximum number of distinct observations per action, $\Delta_{\min}$ is the minimum suboptimality gap, and $k_{\Pi}$ is the number of Pareto optimal actions. Moreover, we show that for globally observable games, the regret is $O(c_{\mathcal{G}}^2 \log(T) \log(k_{\Pi} T) / \Delta_{\min}^2)$ in the stochastic regime and $O((c_{\mathcal{G}}^2 \log(T) \log(k_{\Pi} T))^{1/3} T^{2/3})$ in the adversarial regime, where $c_{\mathcal{G}}$ is a game-dependent constant. We also provide regret bounds for a stochastic regime with adversarial corruptions. Our algorithms are based on the follow-the-regularized-leader framework and are inspired by the approach of exploration by optimization and the adaptive learning rate in the field of online learning with feedback graphs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here