Best of many worlds: Robust model selection for online supervised learning

22 May 2018  ·  Vidya Muthukumar, Mitas Ray, Anant Sahai, Peter L. Bartlett ·

We introduce algorithms for online, full-information prediction that are competitive with contextual tree experts of unknown complexity, in both probabilistic and adversarial settings. We show that by incorporating a probabilistic framework of structural risk minimization into existing adaptive algorithms, we can robustly learn not only the presence of stochastic structure when it exists (leading to constant as opposed to $\mathcal{O}(\sqrt{T})$ regret), but also the correct model order. We thus obtain regret bounds that are competitive with the regret of an optimal algorithm that possesses strong side information about both the complexity of the optimal contextual tree expert and whether the process generating the data is stochastic or adversarial. These are the first constructive guarantees on simultaneous adaptivity to the model and the presence of stochasticity.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here