Beta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference

7 Nov 2014  ·  Dawen Liang, Matthew D. Hoffman ·

Beta process is the standard nonparametric Bayesian prior for latent factor model. In this paper, we derive a structured mean-field variational inference algorithm for a beta process non-negative matrix factorization (NMF) model with Poisson likelihood... Unlike the linear Gaussian model, which is well-studied in the nonparametric Bayesian literature, NMF model with beta process prior does not enjoy the conjugacy. We leverage the recently developed stochastic structured mean-field variational inference to relax the conjugacy constraint and restore the dependencies among the latent variables in the approximating variational distribution. Preliminary results on both synthetic and real examples demonstrate that the proposed inference algorithm can reasonably recover the hidden structure of the data. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here