Beyond Node Embedding: A Direct Unsupervised Edge Representation Framework for Homogeneous Networks

11 Dec 2019  ·  Sambaran Bandyopadhyay, Anirban Biswas, M. N. Murty, Ramasuri Narayanam ·

Network representation learning has traditionally been used to find lower dimensional vector representations of the nodes in a network. However, there are very important edge driven mining tasks of interest to the classical network analysis community, which have mostly been unexplored in the network embedding space. For applications such as link prediction in homogeneous networks, vector representation (i.e., embedding) of an edge is derived heuristically just by using simple aggregations of the embeddings of the end vertices of the edge. Clearly, this method of deriving edge embedding is suboptimal and there is a need for a dedicated unsupervised approach for embedding edges by leveraging edge properties of the network. Towards this end, we propose a novel concept of converting a network to its weighted line graph which is ideally suited to find the embedding of edges of the original network. We further derive a novel algorithm to embed the line graph, by introducing the concept of collective homophily. To the best of our knowledge, this is the first direct unsupervised approach for edge embedding in homogeneous information networks, without relying on the node embeddings. We validate the edge embeddings on three downstream edge mining tasks. Our proposed optimization framework for edge embedding also generates a set of node embeddings, which are not just the aggregation of edges. Further experimental analysis shows the connection of our framework to the concept of node centrality.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here