Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

14 Sep 2012  ·  Juan-Manuel Torres-Moreno ·

In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here