Bi-objective Optimization for Robust RGB-D Visual Odometry

27 Nov 2014  ·  Tao Han, Chao Xu, Ryan Loxton, Lei Xie ·

This paper considers a new bi-objective optimization formulation for robust RGB-D visual odometry. We investigate two methods for solving the proposed bi-objective optimization problem: the weighted sum method (in which the objective functions are combined into a single objective function) and the bounded objective method (in which one of the objective functions is optimized and the value of the other objective function is bounded via a constraint). Our experimental results for the open source TUM RGB-D dataset show that the new bi-objective optimization formulation is superior to several existing RGB-D odometry methods. In particular, the new formulation yields more accurate motion estimates and is more robust when textural or structural features in the image sequence are lacking.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here