Bias Analysis of Spatial Coherence-Based RTF Vector Estimation for Acoustic Sensor Networks in a Diffuse Sound Field

19 May 2022  ·  Wiebke Middelberg, Simon Doclo ·

In many multi-microphone algorithms, an estimate of the relative transfer functions (RTFs) of the desired speaker is required. Recently, a computationally efficient RTF vector estimation method was proposed for acoustic sensor networks, assuming that the spatial coherence (SC) of the noise component between a local microphone array and multiple external microphones is low. Aiming at optimizing the output signal-to-noise ratio (SNR), this method linearly combines multiple RTF vector estimates, where the complex-valued weights are computed using a generalized eigenvalue decomposition (GEVD). In this paper, we perform a theoretical bias analysis for the SC-based RTF vector estimation method with multiple external microphones. Assuming a certain model for the noise field, we derive an analytical expression for the weights, showing that the optimal model-based weights are real-valued and only depend on the input SNR in the external microphones. Simulations with real-world recordings show a good accordance of the GEVD-based and the model-based weights. Nevertheless, the results also indicate that in practice, estimation errors occur which the model-based weights cannot account for.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here