Bias of Homotopic Gradient Descent for the Hinge Loss

26 Jul 2019Denali MolitorDeanna NeedellRachel Ward

Gradient descent is a simple and widely used optimization method for machine learning. For homogeneous linear classifiers applied to separable data, gradient descent has been shown to converge to the maximal margin (or equivalently, the minimal norm) solution for various smooth loss functions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet