Bias-Variance Decomposition for Boltzmann Machines

We achieve bias-variance decomposition for Boltzmann machines using an information geometric formulation. Our decomposition leads to an interesting phenomenon that the variance does not necessarily increase when more parameters are included in Boltzmann machines, while the bias always decreases. Our result gives a theoretical evidence of the generalization ability of deep learning architectures because it provides the possibility of increasing the representation power with avoiding the variance inflation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here