Biclustering Readings and Manuscripts via Non-negative Matrix Factorization, with Application to the Text of Jude

3 Feb 2016Joey McCollumStephen Brown

The text-critical practice of grouping witnesses into families or texttypes often faces two obstacles: Contamination in the manuscript tradition, and co-dependence in identifying characteristic readings and manuscripts. We introduce non-negative matrix factorization (NMF) as a simple, unsupervised, and efficient way to cluster large numbers of manuscripts and readings simultaneously while summarizing contamination using an easy-to-interpret mixture model... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet