Bilinear Programming for Human Activity Recognition with Unknown MRF Graphs

Markov Random Fields (MRFs) have been successfully applied to human activity modelling, largely due to their ability to model complex dependencies and deal with local uncertainty. However, the underlying graph structure is often manually specified, or automatically constructed by heuristics. We show, instead, that learning an MRF graph and performing MAP inference can be achieved simultaneously by solving a bilinear program. Equipped with the bilinear program based MAP inference for an unknown graph, we show how to estimate parameters efficiently and effectively with a latent structural SVM. We apply our techniques to predict sport moves (such as serve, volley in tennis) and human activity in TV episodes (such as kiss, hug and Hi-Five). Experimental results show the proposed method outperforms the state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here