Binary Matrix Factorization via Dictionary Learning

16 Apr 2018  ·  Ignacio Ramirez ·

Matrix factorization is a key tool in data analysis; its applications include recommender systems, correlation analysis, signal processing, among others. Binary matrices are a particular case which has received significant attention for over thirty years, especially within the field of data mining. Dictionary learning refers to a family of methods for learning overcomplete basis (also called frames) in order to efficiently encode samples of a given type; this area, now also about twenty years old, was mostly developed within the signal processing field. In this work we propose two binary matrix factorization methods based on a binary adaptation of the dictionary learning paradigm to binary matrices. The proposed algorithms focus on speed and scalability; they work with binary factors combined with bit-wise operations and a few auxiliary integer ones. Furthermore, the methods are readily applicable to online binary matrix factorization. Another important issue in matrix factorization is the choice of rank for the factors; we address this model selection problem with an efficient method based on the Minimum Description Length principle. Our preliminary results show that the proposed methods are effective at producing interpretable factorizations of various data types of different nature.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods