BioCite: A Deep Learning-based Citation Linkage Framework for Biomedical Research Articles

Research papers reflect scientific advances. Citations are widely used in research publications to support the new findings and show their benefits, while also regulating the information flow to make the contents clearer for the audience. A citation in a research article refers to the information’s source, but not the specific text span from that source article. In biomedical research articles, this task is challenging as the same chemical or biological component can be represented in multiple ways in different papers from various domains. This paper suggests a mechanism for linking citing sentences in a publication with cited sentences in referenced sources. The framework presented here pairs the citing sentence with all of the sentences in the reference text, and then tries to retrieve the semantically equivalent pairs. These semantically related sentences from the reference paper are chosen as the cited statements. This effort involves designing a citation linkage framework utilizing sequential and tree-structured siamese deep learning models. This paper also provides a method to create a synthetic corpus for such a task.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here