Biomedical Signals Reconstruction Under the Compressive Sensing Approach

31 Jan 2018 Martinovic Ivan Mandic Vesna

The paper analyses the possibility to recover different biomedical signals if limited number of samples is available. Having in mind that monitoring of health condition is done by measuring and observing key parameters such as heart activity through electrocardiogram or anatomy and body processes through magnetic resonance imaging, it is important to keep the quality of the reconstructed signal as better as possible... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet