Biometric Signature Verification Using Recurrent Neural Networks

3 May 2022  ·  Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, Javier Ortega-Garcia ·

Architectures based on Recurrent Neural Networks (RNNs) have been successfully applied to many different tasks such as speech or handwriting recognition with state-of-the-art results. The main contribution of this work is to analyse the feasibility of RNNs for on-line signature verification in real practical scenarios. We have considered a system based on Long Short-Term Memory (LSTM) with a Siamese architecture whose goal is to learn a similarity metric from pairs of signatures. For the experimental work, the BiosecurID database comprised of 400 users and 4 separated acquisition sessions are considered. Our proposed LSTM RNN system has outperformed the results of recent published works on the BiosecurID benchmark in figures ranging from 17.76% to 28.00% relative verification performance improvement for skilled forgeries.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.