Bipartite Correlation Clustering -- Maximizing Agreements

In Bipartite Correlation Clustering (BCC) we are given a complete bipartite graph $G$ with `+' and `-' edges, and we seek a vertex clustering that maximizes the number of agreements: the number of all `+' edges within clusters plus all `-' edges cut across clusters. BCC is known to be NP-hard. We present a novel approximation algorithm for $k$-BCC, a variant of BCC with an upper bound $k$ on the number of clusters. Our algorithm outputs a $k$-clustering that provably achieves a number of agreements within a multiplicative ${(1-\delta)}$-factor from the optimal, for any desired accuracy $\delta$. It relies on solving a combinatorially constrained bilinear maximization on the bi-adjacency matrix of $G$. It runs in time exponential in $k$ and $\delta^{-1}$, but linear in the size of the input. Further, we show that, in the (unconstrained) BCC setting, an ${(1-\delta)}$-approximation can be achieved by $O(\delta^{-1})$ clusters regardless of the size of the graph. In turn, our $k$-BCC algorithm implies an Efficient PTAS for the BCC objective of maximizing agreements.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here