Bipartite Stochastic Block Models with Tiny Clusters

NeurIPS 2018 Stefan Neumann

We study the problem of finding clusters in random bipartite graphs. We present a simple two-step algorithm which provably finds even tiny clusters of size $O(n^\epsilon)$, where $n$ is the number of vertices in the graph and $\epsilon > 0$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet