Black Box Submodular Maximization: Discrete and Continuous Settings

28 Jan 2019  ·  Lin Chen, Mingrui Zhang, Hamed Hassani, Amin Karbasi ·

In this paper, we consider the problem of black box continuous submodular maximization where we only have access to the function values and no information about the derivatives is provided. For a monotone and continuous DR-submodular function, and subject to a bounded convex body constraint, we propose Black-box Continuous Greedy, a derivative-free algorithm that provably achieves the tight $[(1-1/e)OPT-\epsilon]$ approximation guarantee with $O(d/\epsilon^3)$ function evaluations. We then extend our result to the stochastic setting where function values are subject to stochastic zero-mean noise. It is through this stochastic generalization that we revisit the discrete submodular maximization problem and use the multi-linear extension as a bridge between discrete and continuous settings. Finally, we extensively evaluate the performance of our algorithm on continuous and discrete submodular objective functions using both synthetic and real data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here