bLIMEy: Surrogate Prediction Explanations Beyond LIME

29 Oct 2019  ·  Kacper Sokol, Alexander Hepburn, Raul Santos-Rodriguez, Peter Flach ·

Surrogate explainers of black-box machine learning predictions are of paramount importance in the field of eXplainable Artificial Intelligence since they can be applied to any type of data (images, text and tabular), are model-agnostic and are post-hoc (i.e., can be retrofitted). The Local Interpretable Model-agnostic Explanations (LIME) algorithm is often mistakenly unified with a more general framework of surrogate explainers, which may lead to a belief that it is the solution to surrogate explainability. In this paper we empower the community to "build LIME yourself" (bLIMEy) by proposing a principled algorithmic framework for building custom local surrogate explainers of black-box model predictions, including LIME itself. To this end, we demonstrate how to decompose the surrogate explainers family into algorithmically independent and interoperable modules and discuss the influence of these component choices on the functional capabilities of the resulting explainer, using the example of LIME.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.