Blind Deconvolution of Widefield Fluorescence Microscopic Data by Regularization of the Optical Transfer Function (OTF)

With volumetric data from widefield fluorescence microscopy, many emerging questions in biological and biomedical research are being investigated. Data can be recorded with high temporal resolution while the specimen is only exposed to a low amount of phototoxicity. These advantages come at the cost of strong recording blur caused by the infinitely extended point spread function (PSF). For widefield microscopy, its magnitude only decays with the square of the distance to the focal point and consists of an airy bessel pattern which is intricate to describe in the spatial domain. However, the Fourier transform of the incoherent PSF (denoted as Optical Transfer Function (OTF)) is well localized and smooth. In this paper, we present a blind deconvolution method that improves results of state-of-theart deconvolution methods on widefield data by exploiting the properties of the widefield OTF.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here