Blind Image Deconvolution using Deep Generative Priors

12 Feb 2018  ·  Muhammad Asim, Fahad Shamshad, Ali Ahmed ·

This paper proposes a novel approach to regularize the \textit{ill-posed} and \textit{non-linear} blind image deconvolution (blind deblurring) using deep generative networks as priors. We employ two separate generative models --- one trained to produce sharp images while the other trained to generate blur kernels from lower-dimensional parameters. To deblur, we propose an alternating gradient descent scheme operating in the latent lower-dimensional space of each of the pretrained generative models. Our experiments show promising deblurring results on images even under large blurs, and heavy noise. To address the shortcomings of generative models such as mode collapse, we augment our generative priors with classical image priors and report improved performance on complex image datasets. The deblurring performance depends on how well the range of the generator spans the image class. Interestingly, our experiments show that even an untrained structured (convolutional) generative networks acts as an image prior in the image deblurring context allowing us to extend our results to more diverse natural image datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here