Block Modeling-Guided Graph Convolutional Neural Networks

27 Dec 2021  ·  Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, Zhiyong Feng ·

Graph Convolutional Network (GCN) has shown remarkable potential of exploring graph representation. However, the GCN aggregating mechanism fails to generalize to networks with heterophily where most nodes have neighbors from different classes, which commonly exists in real-world networks. In order to make the propagation and aggregation mechanism of GCN suitable for both homophily and heterophily (or even their mixture), we introduce block modeling into the framework of GCN so that it can realize "block-guided classified aggregation", and automatically learn the corresponding aggregation rules for neighbors of different classes. By incorporating block modeling into the aggregation process, GCN is able to aggregate information from homophilic and heterophilic neighbors discriminately according to their homophily degree. We compared our algorithm with state-of-art methods which deal with the heterophily problem. Empirical results demonstrate the superiority of our new approach over existing methods in heterophilic datasets while maintaining a competitive performance in homophilic datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here