Block Switching: A Stochastic Approach for Deep Learning Security

18 Feb 2020  ·  Xiao Wang, Siyue Wang, Pin-Yu Chen, Xue Lin, Peter Chin ·

Recent study of adversarial attacks has revealed the vulnerability of modern deep learning models. That is, subtly crafted perturbations of the input can make a trained network with high accuracy produce arbitrary incorrect predictions, while maintain imperceptible to human vision system. In this paper, we introduce Block Switching (BS), a defense strategy against adversarial attacks based on stochasticity. BS replaces a block of model layers with multiple parallel channels, and the active channel is randomly assigned in the run time hence unpredictable to the adversary. We show empirically that BS leads to a more dispersed input gradient distribution and superior defense effectiveness compared with other stochastic defenses such as stochastic activation pruning (SAP). Compared to other defenses, BS is also characterized by the following features: (i) BS causes less test accuracy drop; (ii) BS is attack-independent and (iii) BS is compatible with other defenses and can be used jointly with others.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here