BooST: Boosting Smooth Trees for Partial Effect Estimation in Nonlinear Regressions

10 Aug 2018Yuri FonsecaMarcelo MedeirosGabriel VasconcelosAlvaro Veiga

In this paper, we introduce a new machine learning (ML) model for nonlinear regression called the Boosted Smooth Transition Regression Trees (BooST), which is a combination of boosting algorithms with smooth transition regression trees. The main advantage of the BooST model is the estimation of the derivatives (partial effects) of very general nonlinear models... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet