BoostTree and BoostForest for Ensemble Learning

21 Mar 2020 Changming Zhao Dongrui Wu Jian Huang Ye Yuan Hai-Tao Zhang

Bootstrap aggregation (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite learner. This article proposes BoostForest, which is an ensemble learning approach using BoostTree as base learners and can be used for both classification and regression... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet