Bounds for the Number of Tests in Non-Adaptive Randomized Algorithms for Group Testing

5 Nov 2019  ·  Nader H. Bshouty, George Haddad, Catherine A. Haddad-Zaknoon ·

We study the group testing problem with non-adaptive randomized algorithms. Several models have been discussed in the literature to determine how to randomly choose the tests. For a model ${\cal M}$, let $m_{\cal M}(n,d)$ be the minimum number of tests required to detect at most $d$ defectives within $n$ items, with success probability at least $1-\delta$, for some constant $\delta$. In this paper, we study the measures $$c_{\cal M}(d)=\lim_{n\to \infty} \frac{m_{\cal M}(n,d)}{\ln n} \mbox{ and } c_{\cal M}=\lim_{d\to \infty} \frac{c_{\cal M}(d)}{d}.$$ In the literature, the analyses of such models only give upper bounds for $c_{\cal M}(d)$ and $c_{\cal M}$, and for some of them, the bounds are not tight. We give new analyses that yield tight bounds for $c_{\cal M}(d)$ and $c_{\cal M}$ for all the known models~${\cal M}$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here