BPE and CharCNNs for Translation of Morphology: A Cross-Lingual Comparison and Analysis

5 Sep 2018 Pamela Shapiro Kevin Duh

Neural Machine Translation (NMT) in low-resource settings and of morphologically rich languages is made difficult in part by data sparsity of vocabulary words. Several methods have been used to help reduce this sparsity, notably Byte-Pair Encoding (BPE) and a character-based CNN layer (charCNN)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper