Breaking the $1/\sqrt{n}$ Barrier: Faster Rates for Permutation-based Models in Polynomial Time

27 Feb 2018  ·  Cheng Mao, Ashwin Pananjady, Martin J. Wainwright ·

Many applications, including rank aggregation and crowd-labeling, can be modeled in terms of a bivariate isotonic matrix with unknown permutations acting on its rows and columns. We consider the problem of estimating such a matrix based on noisy observations of a subset of its entries, and design and analyze a polynomial-time algorithm that improves upon the state of the art. In particular, our results imply that any such $n \times n$ matrix can be estimated efficiently in the normalized Frobenius norm at rate $\widetilde{\mathcal O}(n^{-3/4})$, thus narrowing the gap between $\widetilde{\mathcal O}(n^{-1})$ and $\widetilde{\mathcal O}(n^{-1/2})$, which were hitherto the rates of the most statistically and computationally efficient methods, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here