Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator -- that is, a measurable function of the observation -- and a fictitious adversary choosing a prior -- that is, a pair of signal and noise distributions ranging over independent Wasserstein balls -- with the goal to minimize and maximize the expected squared estimation error, respectively. We show that if the Wasserstein balls are centered at normal distributions, then the zero-sum game admits a Nash equilibrium, where the players' optimal strategies are given by an {\em affine} estimator and a {\em normal} prior, respectively. We further prove that this Nash equilibrium can be computed by solving a tractable convex program. Finally, we develop a Frank-Wolfe algorithm that can solve this convex program orders of magnitude faster than state-of-the-art general purpose solvers. We show that this algorithm enjoys a linear convergence rate and that its direction-finding subproblems can be solved in quasi-closed form.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here