Bridging Cognitive Programs and Machine Learning

16 Feb 2018 Amir Rosenfeld John K. Tsotsos

While great advances are made in pattern recognition and machine learning, the successes of such fields remain restricted to narrow applications and seem to break down when training data is scarce, a shift in domain occurs, or when intelligent reasoning is required for rapid adaptation to new environments. In this work, we list several of the shortcomings of modern machine-learning solutions, specifically in the contexts of computer vision and in reinforcement learning and suggest directions to explore in order to try to ameliorate these weaknesses...

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet