Broad Learning for Healthcare

23 Mar 2018  ·  Bokai Cao ·

A broad spectrum of data from different modalities are generated in the healthcare domain every day, including scalar data (e.g., clinical measures collected at hospitals), tensor data (e.g., neuroimages analyzed by research institutes), graph data (e.g., brain connectivity networks), and sequence data (e.g., digital footprints recorded on smart sensors). Capability for modeling information from these heterogeneous data sources is potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Our works in this thesis attempt to facilitate healthcare applications in the setting of broad learning which focuses on fusing heterogeneous data sources for a variety of synergistic knowledge discovery and machine learning tasks. We are generally interested in computer-aided diagnosis, precision medicine, and mobile health by creating accurate user profiles which include important biomarkers, brain connectivity patterns, and latent representations. In particular, our works involve four different data mining problems with application to the healthcare domain: multi-view feature selection, subgraph pattern mining, brain network embedding, and multi-view sequence prediction.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here