Building a Reproducible Machine Learning Pipeline

9 Oct 2018Peter SugimuraFlorian Hartl

Reproducibility of modeling is a problem that exists for any machine learning practitioner, whether in industry or academia. The consequences of an irreproducible model can include significant financial costs, lost time, and even loss of personal reputation (if results prove unable to be replicated)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet