Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing

In Byzantine robust distributed or federated learning, a central server wants to train a machine learning model over data distributed across multiple workers. However, a fraction of these workers may deviate from the prescribed algorithm and send arbitrary messages. While this problem has received significant attention recently, most current defenses assume that the workers have identical data. For realistic cases when the data across workers are heterogeneous (non-iid), we design new attacks which circumvent current defenses, leading to significant loss of performance. We then propose a simple bucketing scheme that adapts existing robust algorithms to heterogeneous datasets at a negligible computational cost. We also theoretically and experimentally validate our approach, showing that combining bucketing with existing robust algorithms is effective against challenging attacks. Our work is the first to establish guaranteed convergence for the non-iid Byzantine robust problem under realistic assumptions.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here