C-3PO: Cyclic-Three-Phase Optimization for Human-Robot Motion Retargeting based on Reinforcement Learning

25 Sep 2019  ·  Taewoo Kim, Joo-Haeng Lee ·

Motion retargeting between heterogeneous polymorphs with different sizes and kinematic configurations requires a comprehensive knowledge of (inverse) kinematics. Moreover, it is non-trivial to provide a kinematic independent general solution... In this study, we developed a cyclic three-phase optimization method based on deep reinforcement learning for human-robot motion retargeting. The motion retargeting learning is performed using refined data in a latent space by the cyclic and filtering paths of our method. In addition, the human-in-the-loop based three-phase approach provides a framework for the improvement of the motion retargeting policy by both quantitative and qualitative manners. Using the proposed C-3PO method, we were successfully able to learn the motion retargeting skill between the human skeleton and motion of the multiple robots such as NAO, Pepper, Baxter and C-3PO. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here