CAISA at SemEval-2023 Task 8: Counterfactual Data Augmentation for Mitigating Class Imbalance in Causal Claim Identification

1 Jun 2023  ·  Akbar Karimi, Lucie Flek ·

The class imbalance problem can cause machine learning models to produce an undesirable performance on the minority class as well as the whole dataset. Using data augmentation techniques to increase the number of samples is one way to tackle this problem. We introduce a novel counterfactual data augmentation by verb replacement for the identification of medical claims. In addition, we investigate the impact of this method and compare it with 3 other data augmentation techniques, showing that the proposed method can result in a significant (relative) improvement in the minority class.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here