Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift

18 Jul 2022  ·  Ananya Kumar, Tengyu Ma, Percy Liang, aditi raghunathan ·

We often see undesirable tradeoffs in robust machine learning where out-of-distribution (OOD) accuracy is at odds with in-distribution (ID) accuracy: a robust classifier obtained via specialized techniques such as removing spurious features often has better OOD but worse ID accuracy compared to a standard classifier trained via ERM. In this paper, we find that ID-calibrated ensembles -- where we simply ensemble the standard and robust models after calibrating on only ID data -- outperforms prior state-of-the-art (based on self-training) on both ID and OOD accuracy. On eleven natural distribution shift datasets, ID-calibrated ensembles obtain the best of both worlds: strong ID accuracy and OOD accuracy. We analyze this method in stylized settings, and identify two important conditions for ensembles to perform well both ID and OOD: (1) we need to calibrate the standard and robust models (on ID data, because OOD data is unavailable), (2) OOD has no anticorrelated spurious features.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here