DeepGaze IIE: Calibrated prediction in and out-of-domain for state-of-the-art saliency modeling

Since 2014 transfer learning has become the key driver for the improvement of spatial saliency prediction; however, with stagnant progress in the last 3-5 years. We conduct a large-scale transfer learning study which tests different ImageNet backbones, always using the same read out architecture and learning protocol adopted from DeepGaze II. By replacing the VGG19 backbone of DeepGaze II with ResNet50 features we improve the performance on saliency prediction from 78% to 85%. However, as we continue to test better ImageNet models as backbones (such as EfficientNetB5) we observe no additional improvement on saliency prediction. By analyzing the backbones further, we find that generalization to other datasets differs substantially, with models being consistently overconfident in their fixation predictions. We show that by combining multiple backbones in a principled manner a good confidence calibration on unseen datasets can be achieved. This new model, "DeepGaze IIE", yields a significant leap in benchmark performance in and out-of-domain with a 15 percent point improvement over DeepGaze II to 93% on MIT1003, marking a new state of the art on the MIT/Tuebingen Saliency Benchmark in all available metrics (AUC: 88.3%, sAUC: 79.4%, CC: 82.4%).

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here