CAMAL: Optimizing LSM-trees via Active Learning

23 Sep 2024  ·  Weiping Yu, Siqiang Luo, Zihao Yu, Gao Cong ·

We use machine learning to optimize LSM-tree structure, aiming to reduce the cost of processing various read/write operations. We introduce a new approach Camal, which boasts the following features: (1) ML-Aided: Camal is the first attempt to apply active learning to tune LSM-tree based key-value stores. The learning process is coupled with traditional cost models to improve the training process; (2) Decoupled Active Learning: backed by rigorous analysis, Camal adopts active learning paradigm based on a decoupled tuning of each parameter, which further accelerates the learning process; (3) Easy Extrapolation: Camal adopts an effective mechanism to incrementally update the model with the growth of the data size; (4) Dynamic Mode: Camal is able to tune LSM-tree online under dynamically changing workloads; (5) Significant System Improvement: By integrating Camal into a full system RocksDB, the system performance improves by 28% on average and up to 8x compared to a state-of-the-art RocksDB design.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here