Can Evolutionary Sampling Improve Bagged Ensembles?

3 Oct 2016  ·  Harsh Nisar, Bhanu Pratap Singh Rawat ·

Perturb and Combine (P&C) group of methods generate multiple versions of the predictor by perturbing the training set or construction and then combining them into a single predictor (Breiman, 1996b). The motive is to improve the accuracy in unstable classification and regression methods. One of the most well known method in this group is Bagging. Arcing or Adaptive Resampling and Combining methods like AdaBoost are smarter variants of P&C methods. In this extended abstract, we lay the groundwork for a new family of methods under the P&C umbrella, known as Evolutionary Sampling (ES). We employ Evolutionary algorithms to suggest smarter sampling in both the feature space (sub-spaces) as well as training samples. We discuss multiple fitness functions to assess ensembles and empirically compare our performance against randomized sampling of training data and feature sub-spaces.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here