$\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks

27 Mar 2024  ·  Rushang Karia, Daniel Bramblett, Daksh Dobhal, Pulkit Verma, Siddharth Srivastava ·

This paper presents $\forall$uto$\exists$val, a new approach for scaling LLM assessment in translating formal syntax -- such as first-order logic, regular expressions, etc -- to natural language (interpretation) or vice versa (compilation), thereby facilitating their use in applications such as generating/explaining logic and control flow for programs etc. Existing approaches for LLM assessment in these areas require labor-intensive ground-truth creation, the availability of which undermines the separation of training and test sets. Furthermore, such datasets typically include relatively few hand-coded test cases over which LLM accuracy is determined, thus making them inadequate for determining the safety or correctness of their generated outputs. We introduce a new approach that utilizes context-free grammars (CFGs) to generate out-of-distribution datasets on the fly and perform closed-loop testing of LLM capabilities using formal verifiers to guarantee the correctness of LLM outputs without any human intervention. We release our dataset and benchmark as open-source code at \url{https://github.com/AAIR-lab/auto-llm-assessment}. We also conduct an assessment of several SOTA closed and open-source LLMs to showcase the feasibility and scalability of this paradigm. Our experiments reveal that SOTA LLMs are unable to solve the formal translation task adequately.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here