Can Retriever-Augmented Language Models Reason? The Blame Game Between the Retriever and the Language Model

18 Dec 2022  ·  Parishad BehnamGhader, Santiago Miret, Siva Reddy ·

Augmenting pretrained language models with retrievers to select the supporting documents has shown promise in effectively solving common NLP problems, including language modeling and question answering, in an interpretable way. In this paper, we first study the strengths and weaknesses of different retriever-augmented language models (REALM, $k$NN-LM, FiD coupled with DPR, and ATLAS and Flan-T5 coupled with Contriever) in reasoning over the retrieved statements in different tasks. We show how the retrieve-then-read models' limitations in reasoning are rooted both in the retriever module as well as the language model. Our experimental results demonstrate that the similarity metric used by the retrievers is generally insufficient for reasoning tasks. Additionally, we show that the language models in retriever-augmented models do not take the complicated relations between the statements into account, which leads to poor reasoning performance even when using the larger models. Moreover, we analyze the reasoning performance of large language models using multihop retrieval but we only observe minor improvements. Overall, this shows great room for further research in this area.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.